

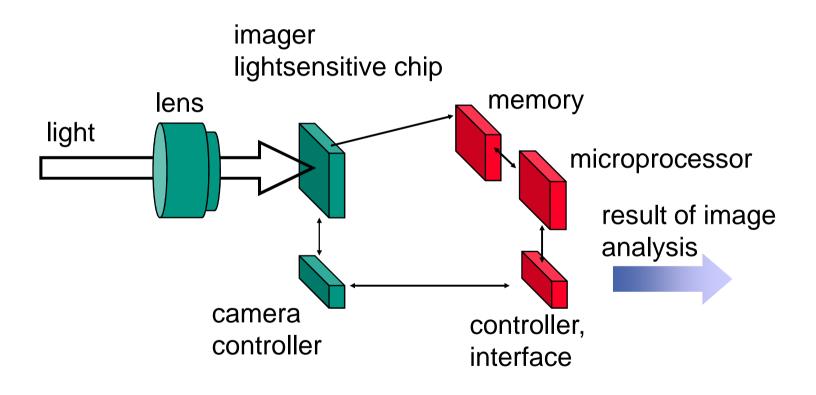
Machine Vision

Chapter 2: Image Preprocessing

Dr. Martin Lauer Institut für Messund Regelungstechnik

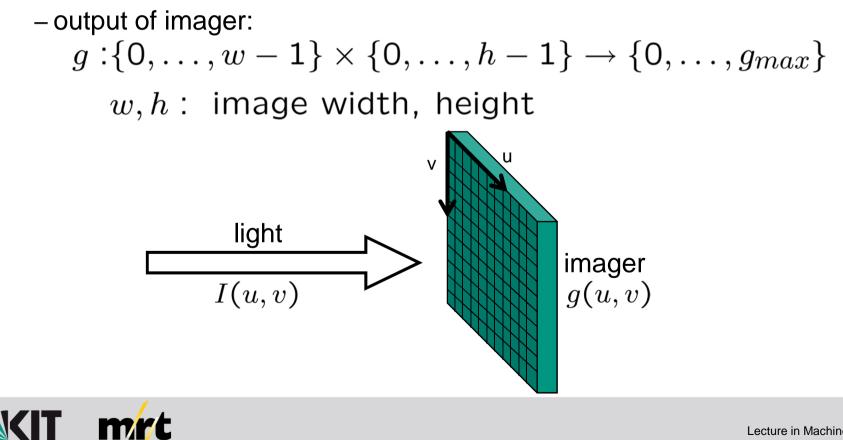
Image Formation and Analysis

electronic camera
(formation)ECU (electronic control unit)
(image processing)



Imager

- Process of image formation:
 - incident light intensity:
 - $I: \mathbb{R}^2 \longrightarrow \mathbb{R}$



Imager

- Process of image formation:
 - sampling

evaluate light intensity on a regular grid of points

- quantization

map continuous signals to discrete values (natural numbers)

- blur and noise

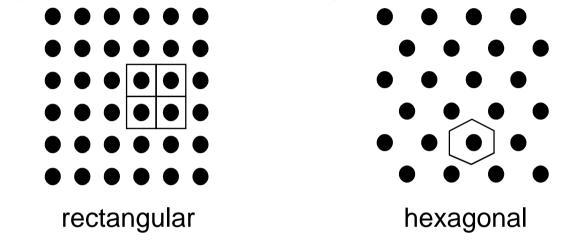
- color

will be discussed later. Here: only light intensity/grey level images

Lecture in Machine Vision - 4

Sampling

• 2D grids used for sampling



- electronic cameras: rectangular, equidistant grids
- biology: hexagonal grids with varying resolution

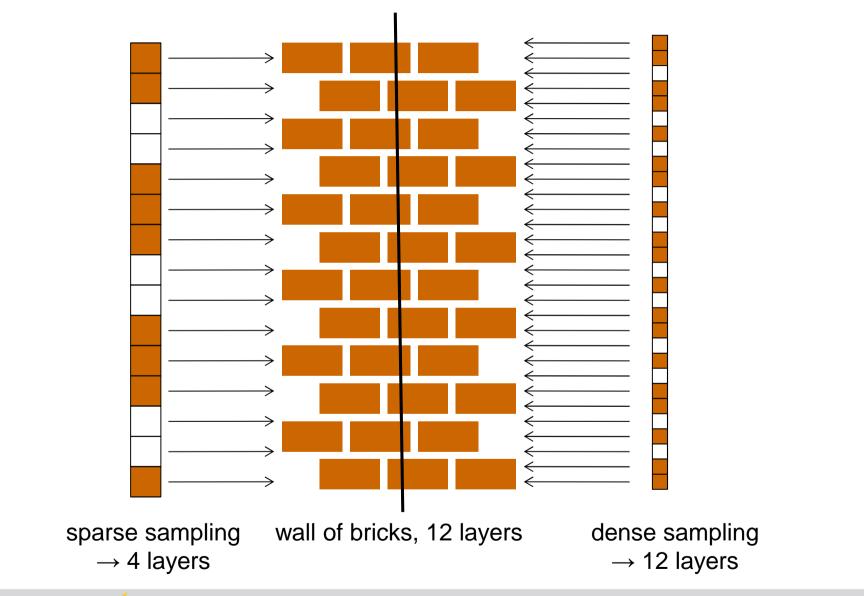
Sampling: Moiré Patterns

- Moiré patterns
 - sampling might cause artifacts

original picture

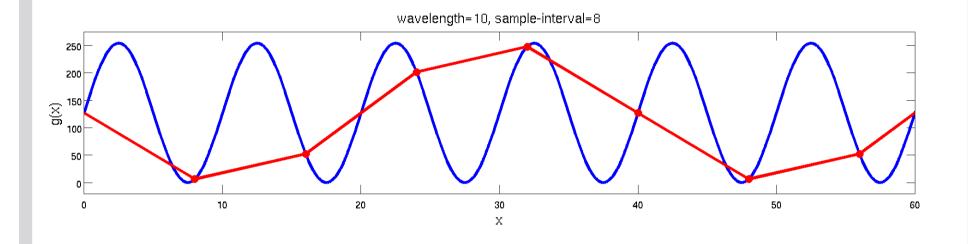
picture with Moiré pattern

Sampling: Moiré Patterns



Sampling: Moiré Patterns cont.

• 1D-example of Moiré patterns:



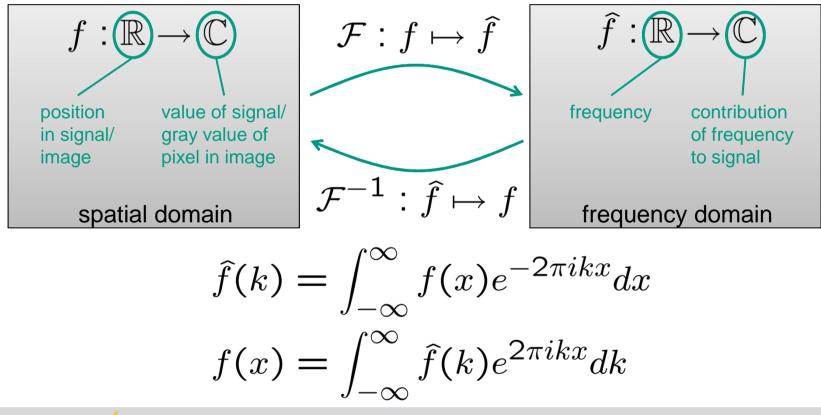
The occurrence of Moiré patterns depends on the sampling rate compared to the maximal frequency of the signal (image)

Nyquist-Shannon Sampling Theorem

If *f* is band bounded signal with cutoff frequency k_0 then it is completely determined by giving its ordinates at a series of points spaced at most $\frac{1}{2k_0}$, i.e. the sample frequency must be larger than $2k_0$

- Questions:
 - what is a band-bounded signal?
 - what is a cutoff frequency?

- Assume a periodic signal $f: \mathbb{R} \to \mathbb{C}$
- Then, we can define the Fourier transform of f



- Properties:
 - the Fourier transform is linear

$$\mathcal{F}\left\{\alpha f(x) + \beta g(x)\right\}(k) = \alpha \widehat{f}(k) + \beta \widehat{g}(k)$$

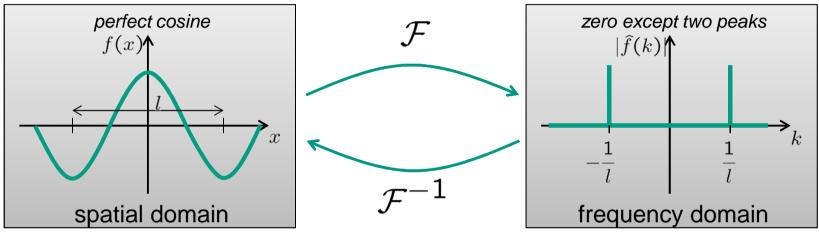
 shifting a signal along the x-axis only changes the complex angles in frequency domain but not the amplitudes

$$\mathcal{F}\left\{f(x-\xi)\right\}(k) = e^{-2\pi i\xi k}\widehat{f}(k)$$

 rescaling the x-axis in the spatial domain rescales the frequency axis in a reciprocal way

$$\mathcal{F}\left\{f(\alpha x)\right\}(k) = \frac{1}{|\alpha|}\widehat{f}(\frac{k}{\alpha})$$

- Properties:
 - a cosine in spatial domain generates two peaks in frequency domain



- the peaks are located at position reciprocal to the period length

- if the signal in spatial domain is a linear combination of cosines, the Fourier transform will be a set of peaks in frequency domain
- intuitive interpretation: the Fourier transform decomposes a periodic signal into a (potentially infinite) linear combination of cosines

Observation

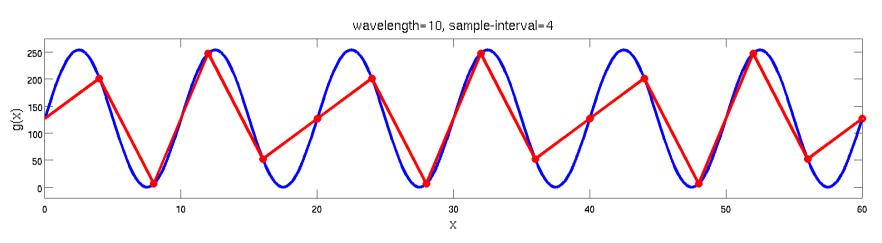
- smooth periodic functions with small slope can be composed out of cosines with large period
- periodic functions with large slope require cosines with small period
- periodic functions that are discontinuous or have discontinuous derivatives require cosines with unbounded frequencies

Definition

A signal f is band bounded with cutoff frequency k_0 if its Fourier transform is zero for all frequencies larger than the cutoff frequency, i.e.

 $\widehat{f}(k) = 0$ for all k with $|k| \ge k_0$

Nyquist-Shannon Sampling Theorem



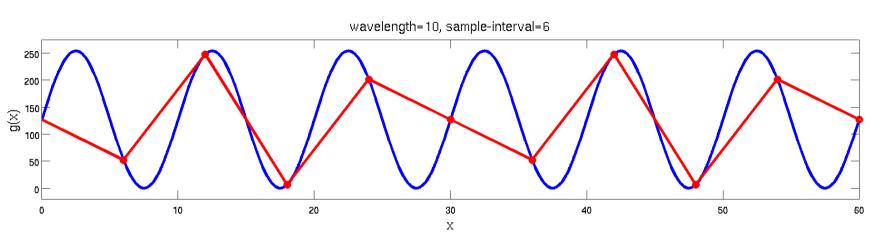
- signal is band bounded (sine function)
- sampling frequency high enough

$$f_{sample} = \frac{1}{4} > 2f_{signal} = \frac{2}{10}$$

• reconstruction of the signal possible

If *f* is band bounded signal with cutoff frequency k_0 then it is completely determined by giving its ordinates at a series of points spaced at most $\frac{1}{2k_0}$, i.e. the sample frequency must be larger than $2k_0$

Nyquist-Shannon Sampling Theorem



- signal is band bounded (sine function)
- but

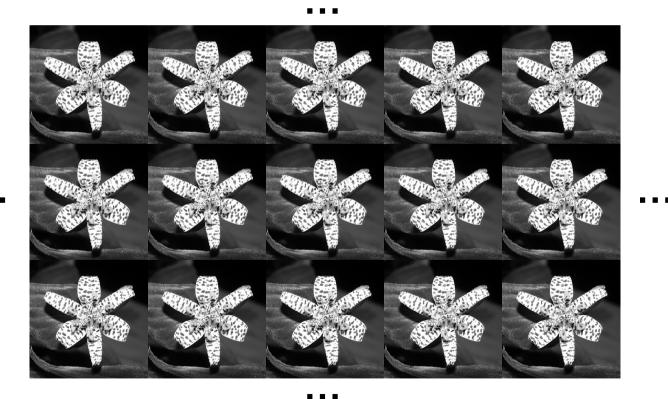
$$f_{sample} = \frac{1}{6} < 2f_{signal} = \frac{2}{10}$$

• reconstruction of the signal impossible

If *f* is band bounded signal with cutoff frequency k_0 then it is completely determined by giving its ordinates at a series of points spaced at most $\frac{1}{2k_0}$, i.e. the sample frequency must be larger than $2k_0$

Sampling Theorem and Images

- Remarks:
 - analysis analogously possible for 2d signals
 - image is not periodic, but we can make it periodic by copying it repeatedly to the left, right, top, and bottom



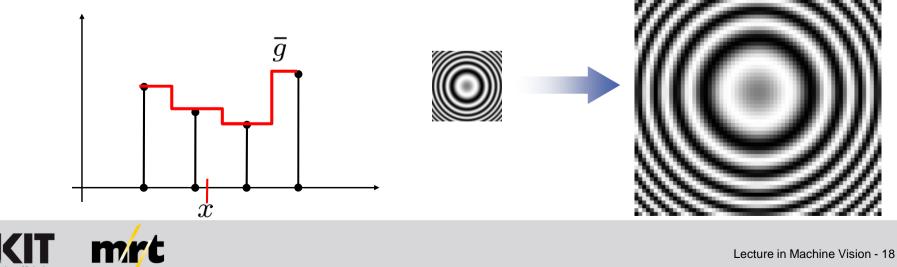
Sampling Theorem and Images

• Questions:

- how can we determine the sampling frequency of a camera?
- what can we do if we find that the sampling theorem is violated?

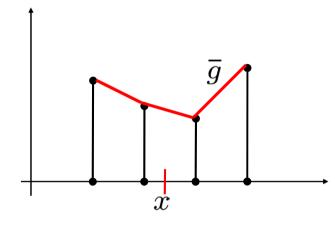
Image Scaling and Interpolation

- changing the image size
- scaling needs evaluation of the image at non-integer positions \rightarrow interpolation
- nearest neighbor interpolation:
 - approximating the grey level function with a step function
 - take the grey value of the nearest integer position
 - problem: aliasing

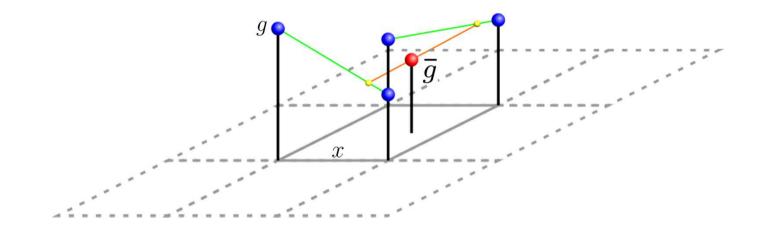


- linear interpolation in ID
 - fit linear function locally around x

$$\bar{g}(x) = g(\lfloor x \rfloor) + (x - \lfloor x \rfloor)(g(\lfloor x \rfloor + 1) - g(\lfloor x \rfloor))$$



• extension of linear interpolation to 2D:



- interpolate from 4 neighboring pixels

- cubic interpolation
 - fit cubic polynomial to the grey level

- solve

$$\overline{g}(x) = a \cdot (x - \lfloor x \rfloor)^3 + b \cdot (x - \lfloor x \rfloor)^2 + c \cdot (x - \lfloor x \rfloor) + d$$
yields:

$$a = -\frac{1}{6}g(\lfloor x \rfloor - 1) + \frac{1}{2}g(\lfloor x \rfloor) - \frac{1}{2}g(\lfloor x \rfloor + 1) + \frac{1}{6}g(\lfloor x \rfloor + 2)$$

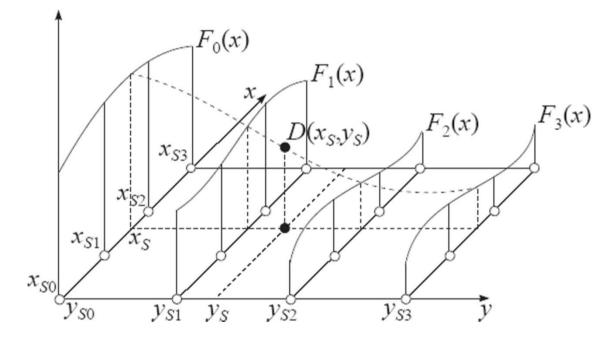
$$b = \frac{1}{2}g(\lfloor x \rfloor - 1) - g(\lfloor x \rfloor) + \frac{1}{2}g(\lfloor x \rfloor + 1)$$

$$c = -\frac{1}{3}g(\lfloor x \rfloor - 1) - \frac{1}{2}g(\lfloor x \rfloor) + g(\lfloor x \rfloor + 1) - \frac{1}{6}g(\lfloor x \rfloor + 2)$$

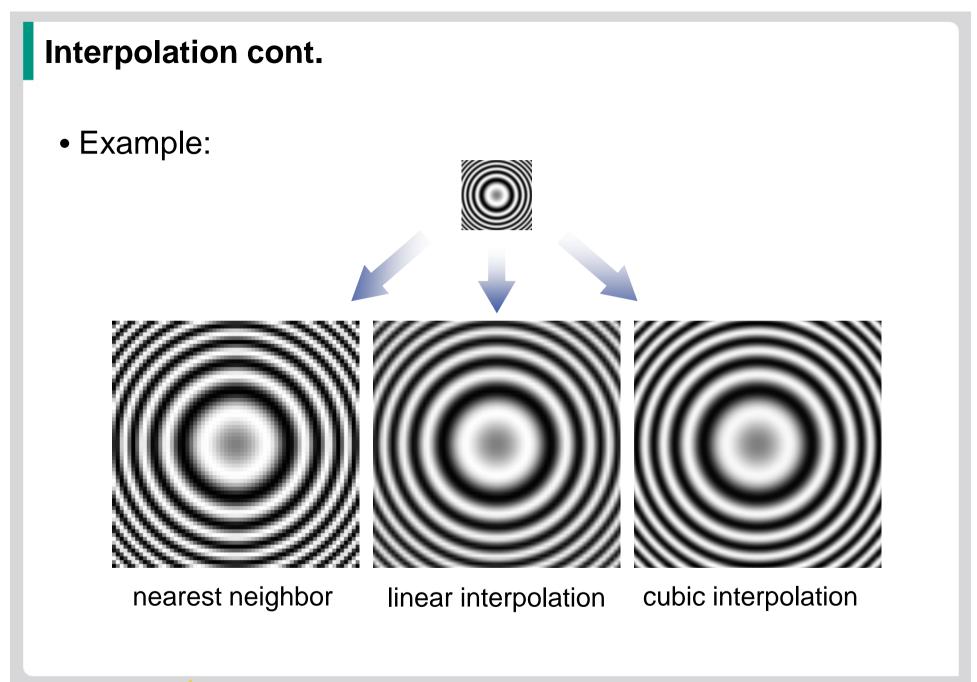
$$d = g(\lfloor x \rfloor)$$

$$\overline{g}$$

• extension of cubic interpolation to 2D:



– interpolation from 16 neighboring pixels



Imager

- Process of image formation:
 - sampling

evaluate light intensity on a regular grid of points

- quantization

map continuous signals to discrete values (natural numbers)

- blur and noise

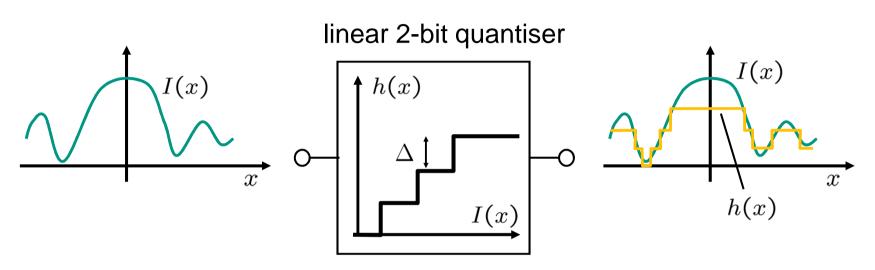
- color

will be discussed later. Here: only light intensity/grey level images

Quantization

- incident light: $I: \mathbb{R}^2 \to \mathbb{R}$
- digital camera signals: $g: \{0, \dots, w-1\} \times \{0, \dots, h-1\} \rightarrow \{0, \dots, g_{max}\}$ w, h: image width, height
- need transformation from real valued light intensity to discrete digital signals (analog-to-digital converter)

Quantization cont.



• characteristic with equidistant steps ("linear") of size Δ :

$$g(x) = \max\{0, \min\{g_{max}, \left\lfloor \frac{I(x)}{\Delta} + \frac{1}{2} \right\rfloor\}\}$$
$$h(x) = \Delta g(x)$$

• error of non-overdriven quantiser:

$$I(x) - h(x) \in [-\frac{\Delta}{2}, \frac{\Delta}{2}]$$

Lecture in Machine Vision - 26

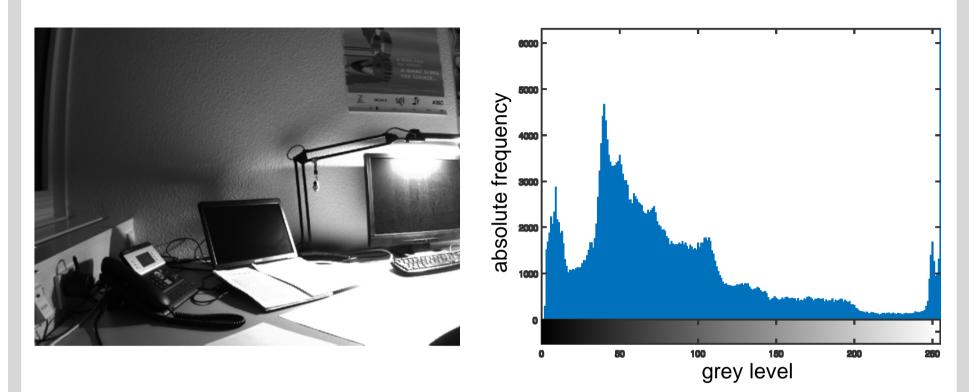
Quantization cont.

- characteristic of digital cameras:
 - -linear
 - logarithmic
- grey level cutoff value
 - -1 (binary images, "bitmaps") $\rightarrow 1$ bit/pixel
 - $-255 \rightarrow 8 \text{ bit/pixel} = 1 \text{ byte/pixel}$
 - $-4095 \rightarrow 12$ bit/pixel = 1.5 byte/pixel
 - $-65535 \rightarrow 16$ bit/pixel = 2 byte/pixel
- correction of grey level distribution
 - image too dark/too bright
 - low contrast
 - non-linear camera characteristic

linear characteristic

logarithmic characteristic

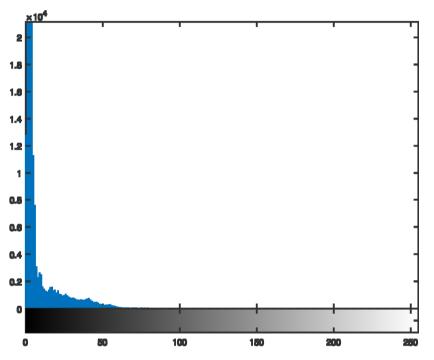
Grey Level Histogram



• grey level histograms display distribution of grey levels

Lecture in Machine Vision - 28

Grey Level Histogram cont.

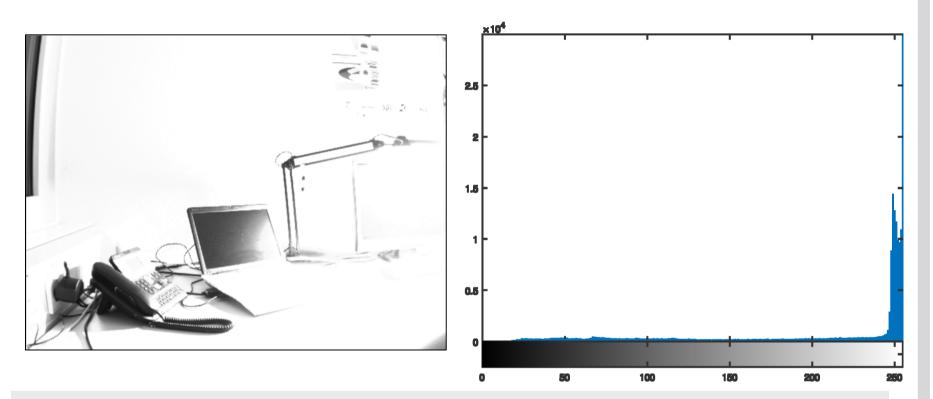


Underexposed images:

- open aperture of camera
- increase exposure time of camera
- increase gain
- add additional light sources

- multiply grey values by a constant
- auto-exposure implemented in many digital cameras

Grey Level Histogram cont.



Overexposed images:

- information loss due to cutoff value, no reconstruction possible
- close aperture of camera
- reduce exposure time of camera
- auto-exposure

Grey Level Histogram cont.

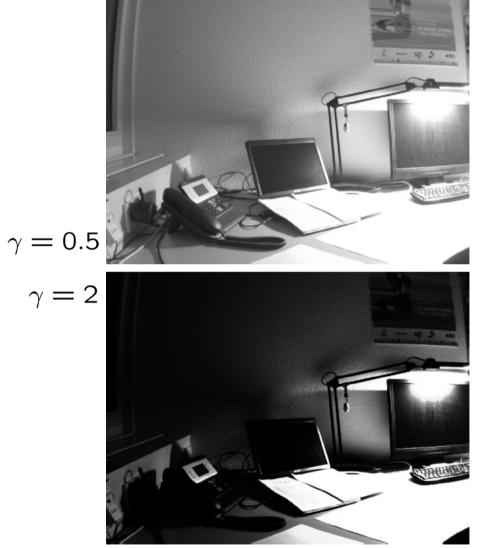
 $\gamma = 2$

 $\gamma = 1$

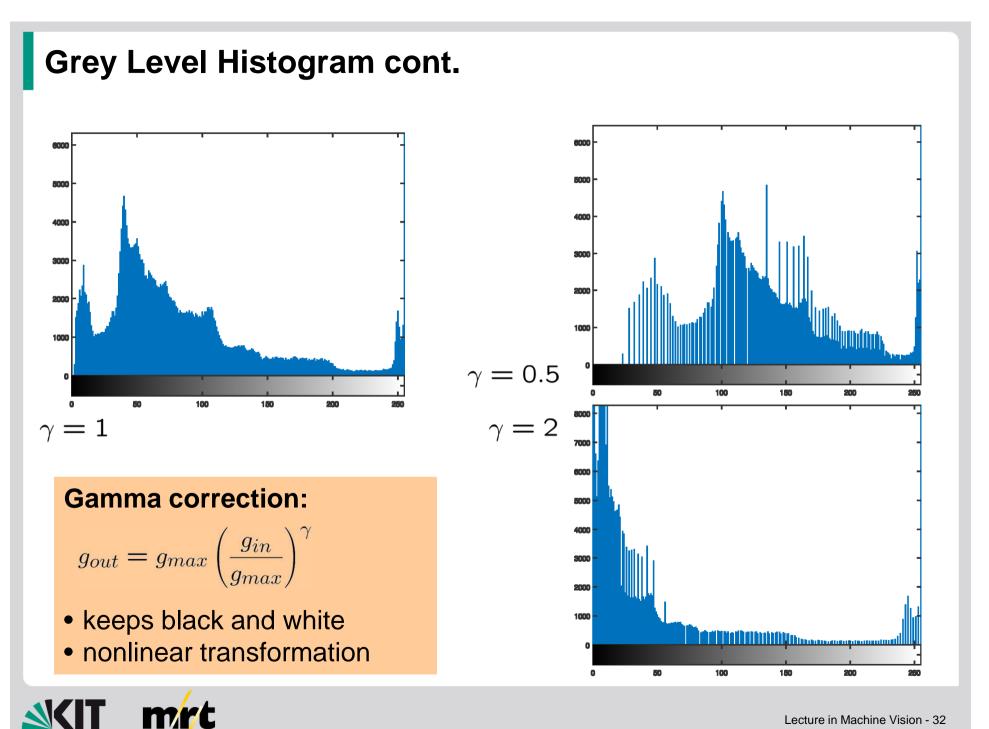
Gamma correction:

$$g_{out} = g_{max} \left(\frac{g_{in}}{g_{max}} \right)$$

- keeps black and white
- nonlinear transformation

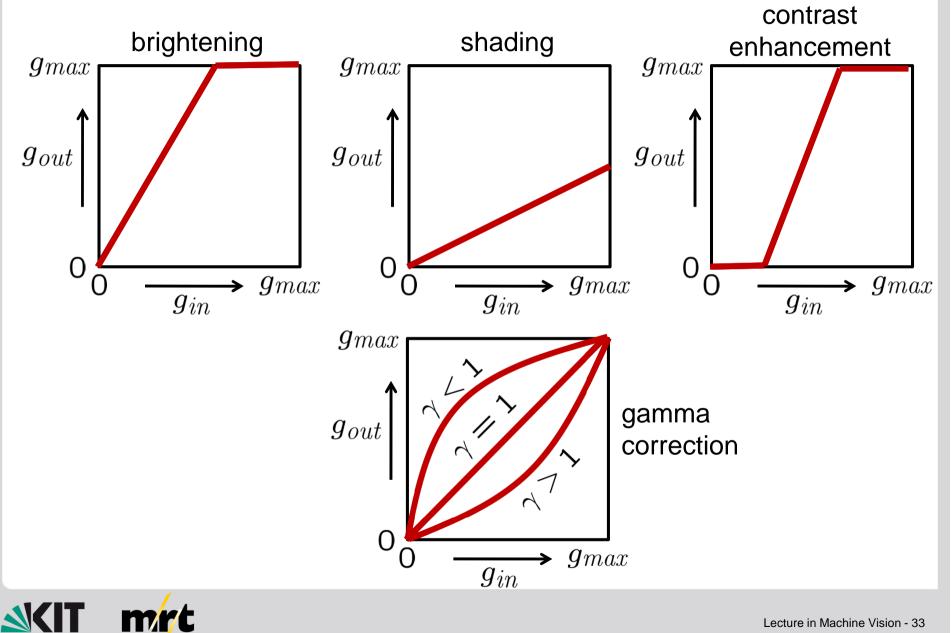


Lecture in Machine Vision - 31



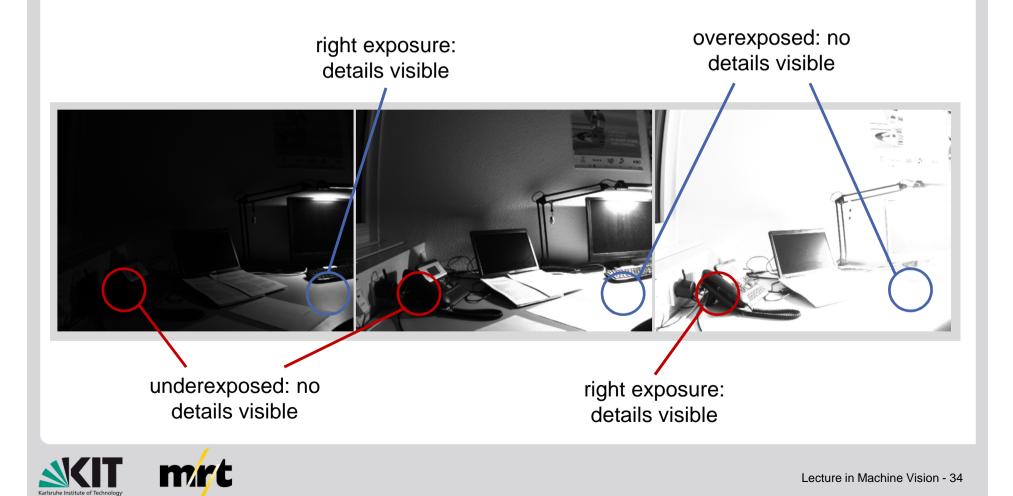
Lecture in Machine Vision - 32

Grey Level Transformations

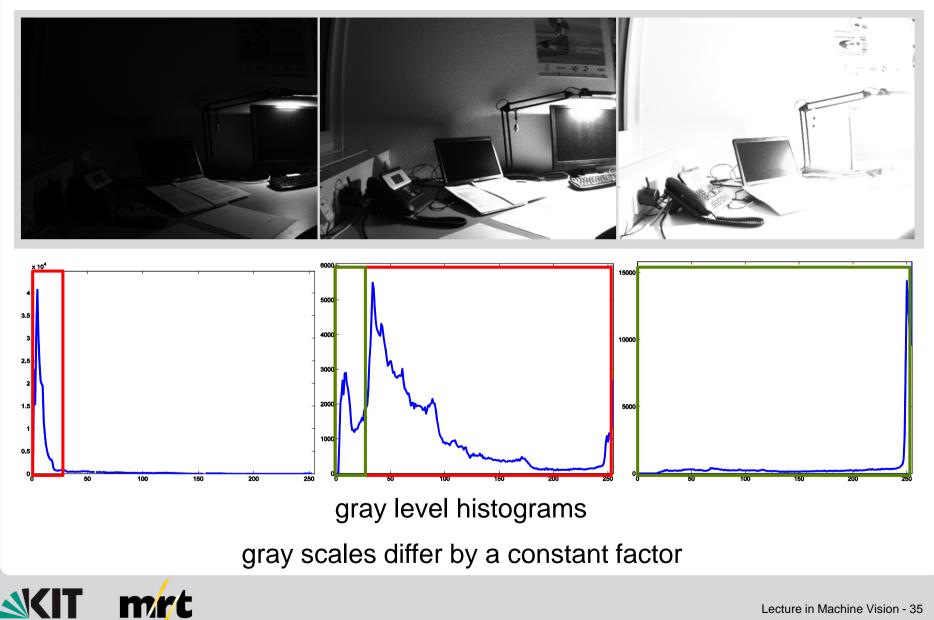


Exposure Series

 exposure bracketing, high dynamic range imaging (HDRI): increase the grey value resolution combining over- and underexposed images

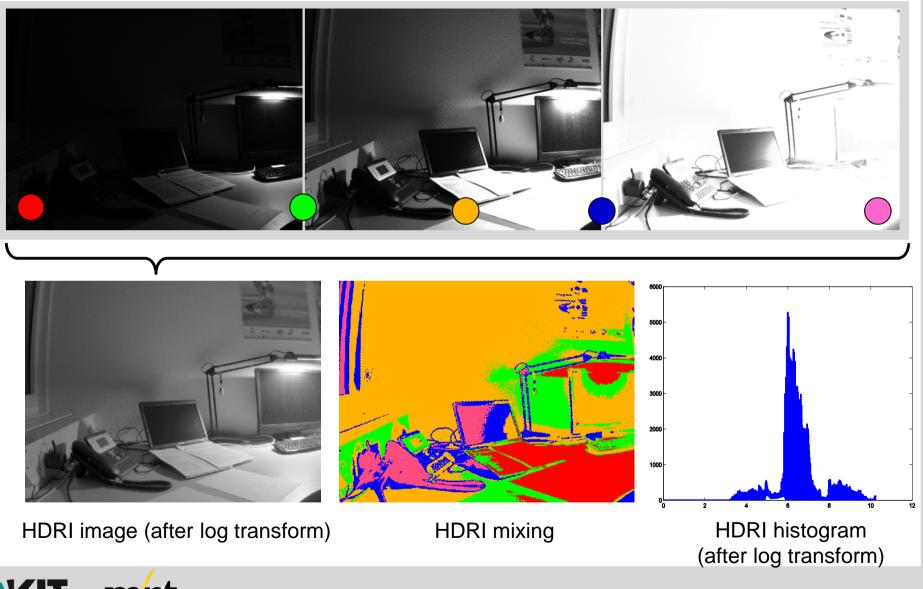


Exposure Series cont.



Lecture in Machine Vision - 35

Exposure Series cont.



Imager

- Process of image formation:
 - sampling

evaluate light intensity on a regular grid of points

- quantization

map continuous signals to discrete values (natural numbers)

- blur and noise

- color

will be discussed later. Here: only light intensity/grey level images

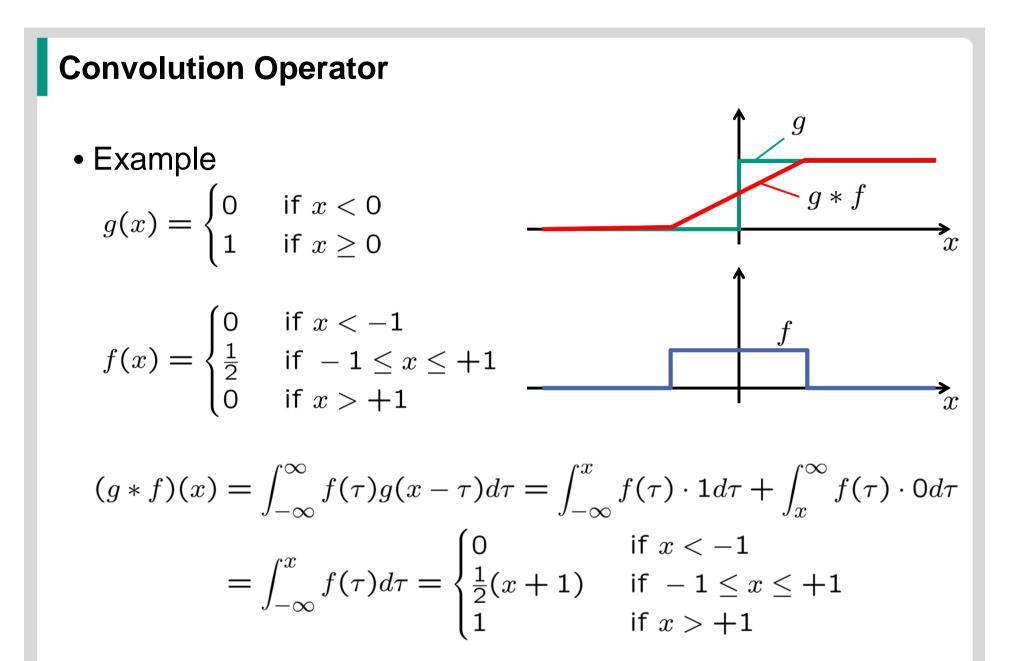
Convolution Operator

The convolution operator

- takes two functions f,g
- creates a new function h = g * f
- which is defined pointwise by

$$h(x) = \int_{-\infty}^{\infty} f(\tau)g(x-\tau)d\tau$$

- we interpret
 - ${\scriptstyle \bullet } g$ is a gray level image
 - $\bullet f$ is a filter function
 - ${\scriptstyle \bullet}\,h$ is a filtered image
- convolution implements a linear filter



Convolution Operator

- Properties of convolution
 - commutativity

$$f \ast g = g \ast f$$

- associativity

$$(f * g) * h = f * (g * h)$$

- linearity

$$f * (\alpha g + \beta h) = \alpha (f * g) + \beta (f * h)$$

- relationship with Fourier transform

$$\mathcal{F}(f * g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$$
$$\mathcal{F}(f \cdot g) = \mathcal{F}(f) * \mathcal{F}(g)$$

Convolution of Images

- Convolution can be extended
 - to the 2d case

mrt

$$f,g: \mathbb{R}^2 \to \mathbb{R}$$
$$(g*f)(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau,\rho)g(x-\tau,y-\rho)d\tau d\rho$$

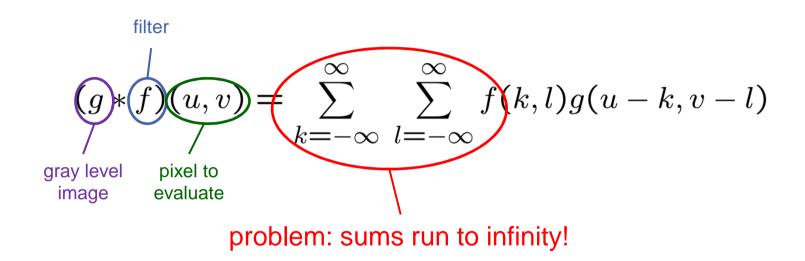
- to the case of function which we can evaluate only at integer positions

$$f,g:\mathbb{Z}\to\mathbb{R}$$

 $(g*f)(u)=\sum_{k=-\infty}^{\infty}f(k)g(u-k)$

$$f,g:\mathbb{Z}^2 \to \mathbb{R}$$
$$(g*f)(u,v) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f(k,l)g(u-k,v-l)$$

Convolution of Images

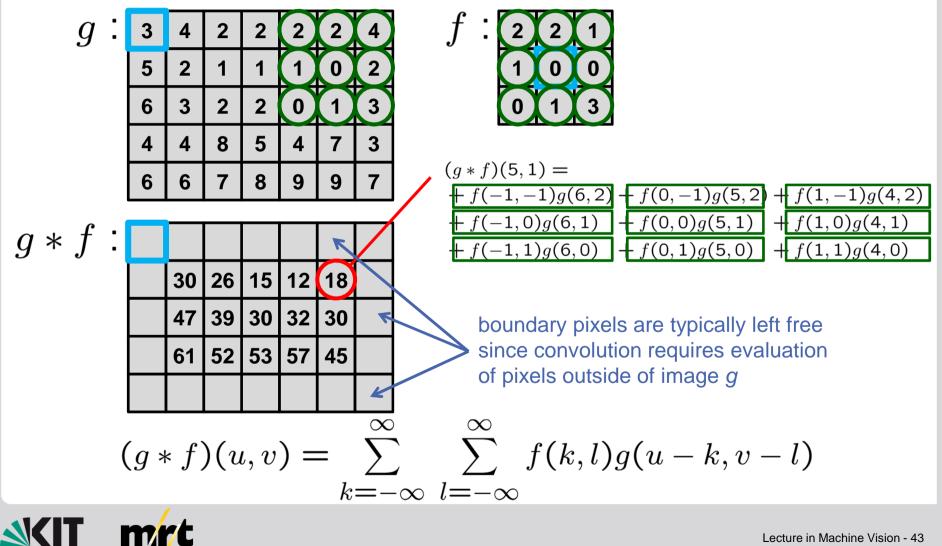


- in practice, filters and images have limited size.

We assume that all gray levels outside of filter size are 0

Convolution of Images

• Example

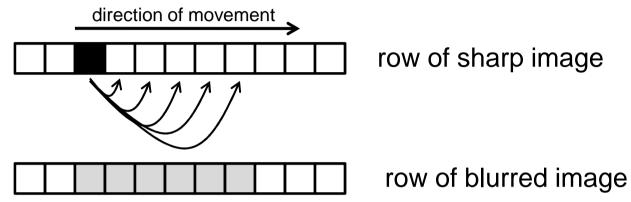


Blur and Noise

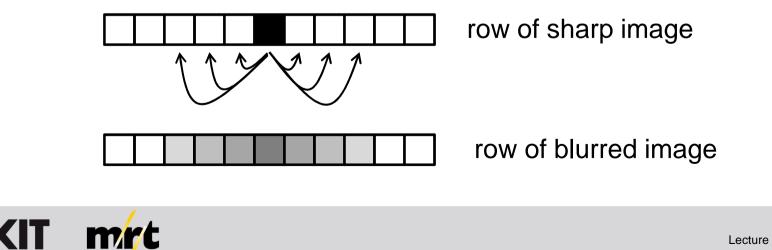
- types of blur and noise:
 - motion blur
 - defocus aberration
 - statistical noise of sensor cells and amplifiers
 - malfunctioning sensor cells

Models of Blur

• Motion blur:



• Gaussian blur:

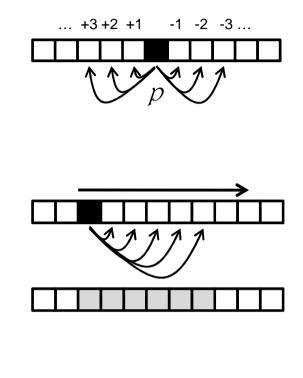


Models of Blur cont.

• blur can be modeled with convolution $g_{blurred} = g_{sharp} * p$

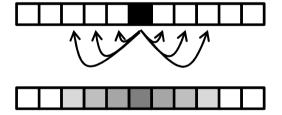
p : "point-spread-function" models blur

- motion blur (along x-axis by n pixels): $p_{motion}(x) = \begin{cases} \frac{1}{n} & \text{if } -n < x \leq 0\\ 0 & \text{otherwise} \end{cases}$



- Gaussian blur (with variance
$$\sigma^2$$
):

$$p_{Gauss}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{x^2}{\sigma^2}}$$



Wiener Deconvolution

 techniques to obtain sharp image from blurred image based on Wiener filter

 $g_{blurred} = g_{sharp} * p + v$

- p: point-spread-function
- v: pixel noise

assume g_{sharp} and \boldsymbol{v} be independent

 $g_{restored} = f * g_{blurred}$

```
find optimal f that minimizes:

e(k) = \mathbb{E} \left[ |\hat{g}_{sharp}(k) - \hat{g}_{restored}(k)|^2 \right]
(\hat{g} \text{ denotes Fourier transform of } g)
(\mathbb{E} \text{ denotes expectation value})
```


$$e(k) = \mathbb{E}\left[|\hat{g}_{sharp}(k) - \hat{g}_{restored}(k)|^{2}\right]$$

$$= \mathbb{E}\left[|\hat{g}_{sharp}(k) - \hat{f}(k)\hat{g}_{blurred}(k)|^{2}\right]$$

$$= \mathbb{E}\left[|\hat{g}_{sharp}(k) - \hat{f}(k)(\hat{p}(k)\hat{g}_{sharp}(k) + \hat{v}(k))|^{2}\right]$$

$$= \mathbb{E}\left[|(1 - \hat{f}(k)\hat{p}(k))\hat{g}_{sharp}(k) - \hat{f}(k)\hat{v}(k)|^{2}\right]$$

$$= (1 - \hat{f}(k)\hat{p}(k))(1 - \hat{f}(k)\hat{p}(k))^{*}\mathbb{E}\left[\hat{g}_{sharp}(k)\hat{g}_{sharp}^{*}(k)\right]$$

$$- (1 - \hat{f}(k)\hat{p}(k))\hat{f}^{*}(k)\mathbb{E}\left[\hat{g}_{sharp}(k)\hat{v}^{*}(k)\right]$$

$$- \hat{f}(k)(1 - \hat{f}(k)\hat{p}(k))^{*}\mathbb{E}\left[\hat{v}(k)\hat{g}_{sharp}^{*}(k)\right]$$
independence of signal and noise yields:
$$\mathbb{E}\left[\hat{g}_{sharp}(k)\hat{v}^{*}(k)\right] = \mathbb{E}\left[\hat{v}(k)\hat{g}_{sharp}^{*}(k)\right] = 0$$
denote:
$$S(k) = \mathbb{E}\left[\hat{g}_{sharp}(k)\hat{g}_{sharp}^{*}(k)\right], \quad N(k) = \mathbb{E}\left[\hat{v}(k)\hat{v}^{*}(k)\right]$$

$$e(k) = (1 - \hat{f}(k)\hat{p}(k))(1 - \hat{f}(k)\hat{p}(k))^{*}S(k) + \hat{f}(k)\hat{f}^{*}(k)N(k)$$

• zeroing the derivative of e to obtain the minimum yields:

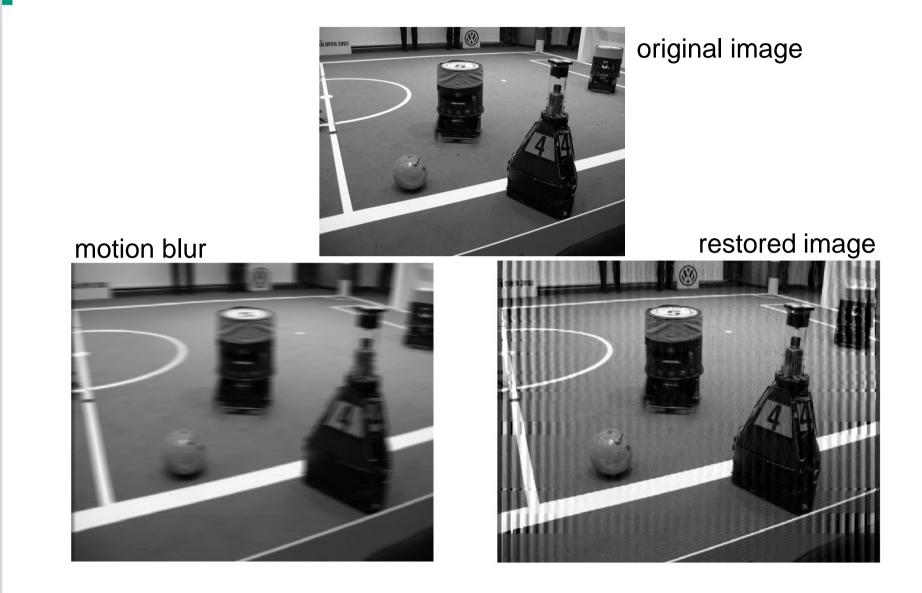
$$\hat{f}(k) = \frac{\hat{p}^*(k)S(k)}{\hat{p}(k)\hat{p}^*(k)S(k) + N(k)} = \frac{\hat{p}^*(k)}{|\hat{p}(k)|^2 + (\frac{S(k)}{N(k)})^{-1}}$$

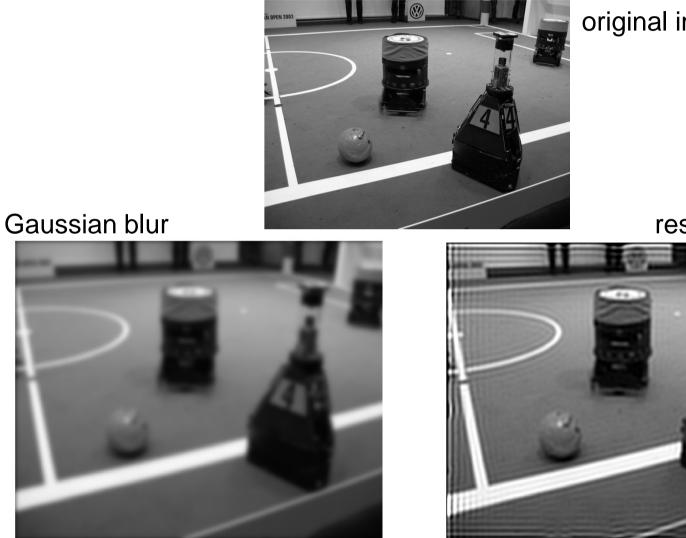
which defines the optimal linear filter (Wiener filter)

- $\frac{S(k)}{N(k)}$ is the signal-to-noise ratio
- in the noiseless case:

$$\widehat{f}(k) = \frac{1}{\widehat{p}(k)}$$
 (if $N(k) = 0$)

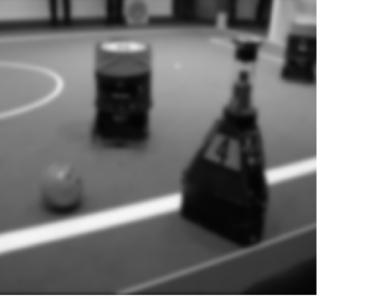
• but:
$$\frac{S(k)}{N(k)}$$
 and $\hat{p}(k)$ must be known





original image

restored image



Models of Noise

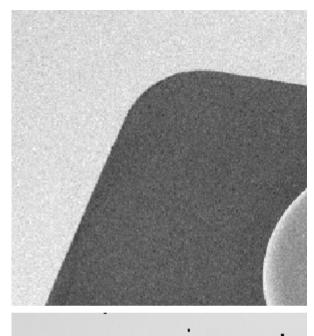
• statistical noise:

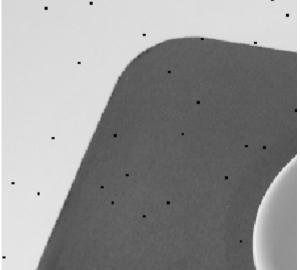
$$g_{noisy}(x,y) = g_{sharp}(x,y) + v(x,y)$$
$$v(x,y) \sim N(0,\sigma^2) \ i.i.d.$$

(i.i.d. = independent and identically distributed)

• malfunctioning sensors:

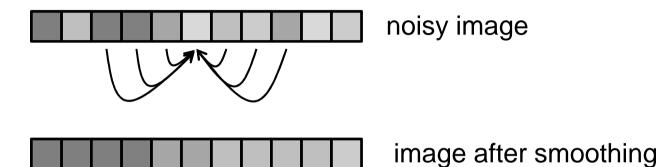
 $g_{noisy}(x,y) = \begin{cases} g_{sharp}(x,y) & \text{with probability } p \\ \text{arbitrary} & \text{otherwise} \end{cases}$



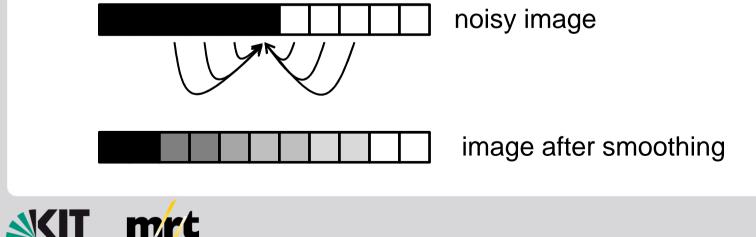


Statistical Noise

• basic idea: averaging (smoothing)



 works well in homogeneous areas, but fails at grey level edges



Smoothing Filters

• rectangular filter

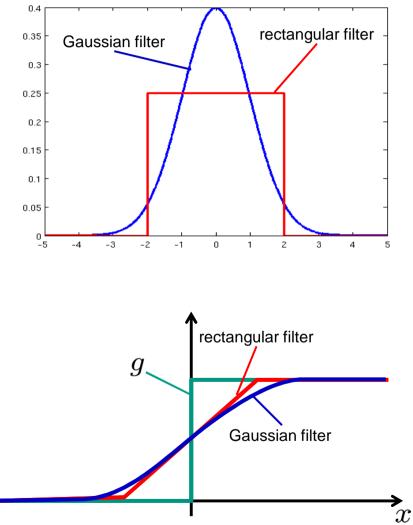
$$f(x) = \begin{cases} \frac{1}{a} & \text{ if } |x| < \frac{a}{2} \\ 0 & \text{ otherwise} \end{cases}$$

the larger parameter \boldsymbol{a} , the stronge smoothing

• Gaussian filter

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{x^2}{\sigma^2}}$$

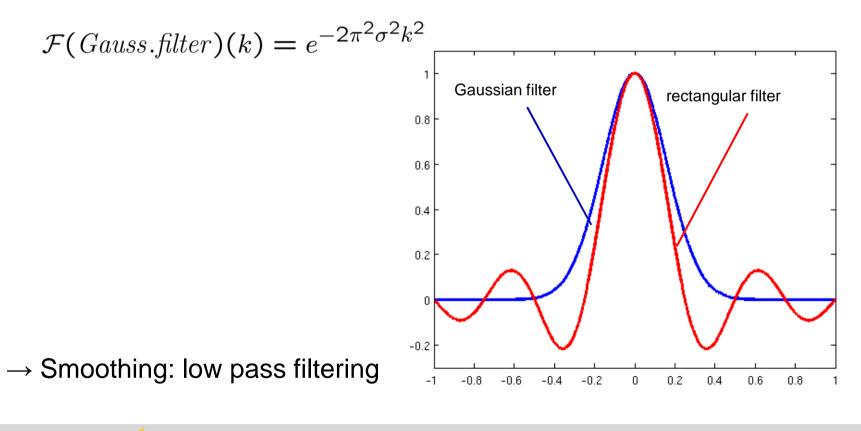
the larger parameter σ , the stronger smoothing



Smoothing Filters

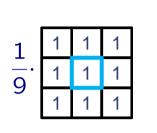
• Fourier transform of smoothing filters

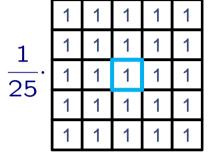
$$\mathcal{F}(rect.filter)(k) = sinc(ak) = \begin{cases} \frac{\sin(\pi x)}{\pi x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$



Smoothing Filters for Images

- rectangular filter masks:





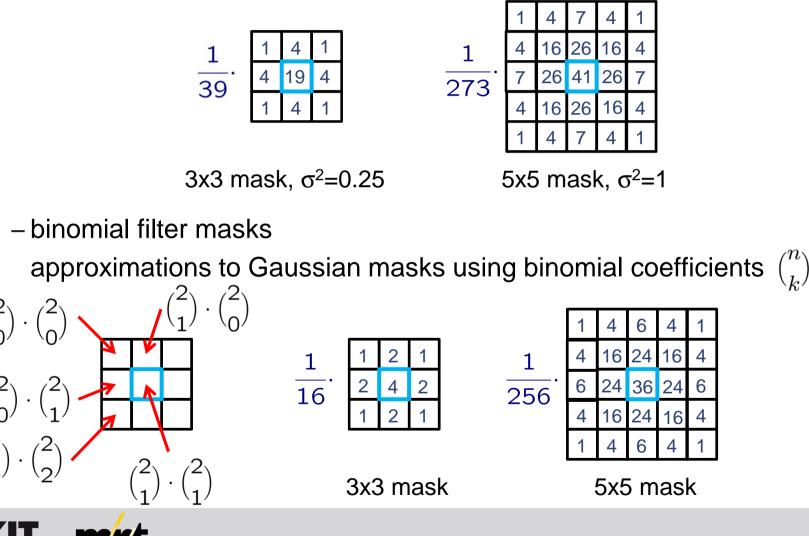
$\frac{1}{19.8}$.	0.1	0.8	1	0.8	0.1
	0.8	1	1	1	0.8
	1	1	1	1	1
	0.8	1	1	1	0.8
	0.1	0.8	1	0.8	0.1

3x3 square mask 5x5 square mask

5x5 disc mask

Discrete Convolution cont.

– Gaussian filter masks:





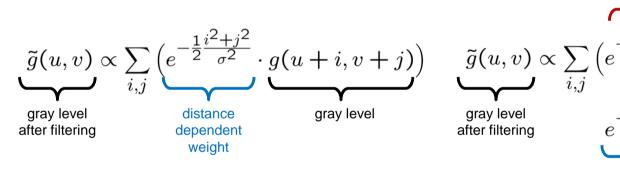
Bilateral filter

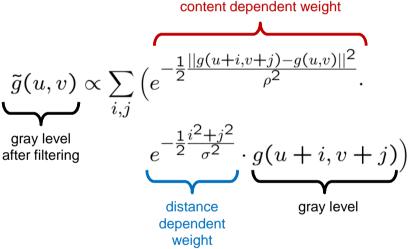
Gaussian filter

 filter mask independent of image content

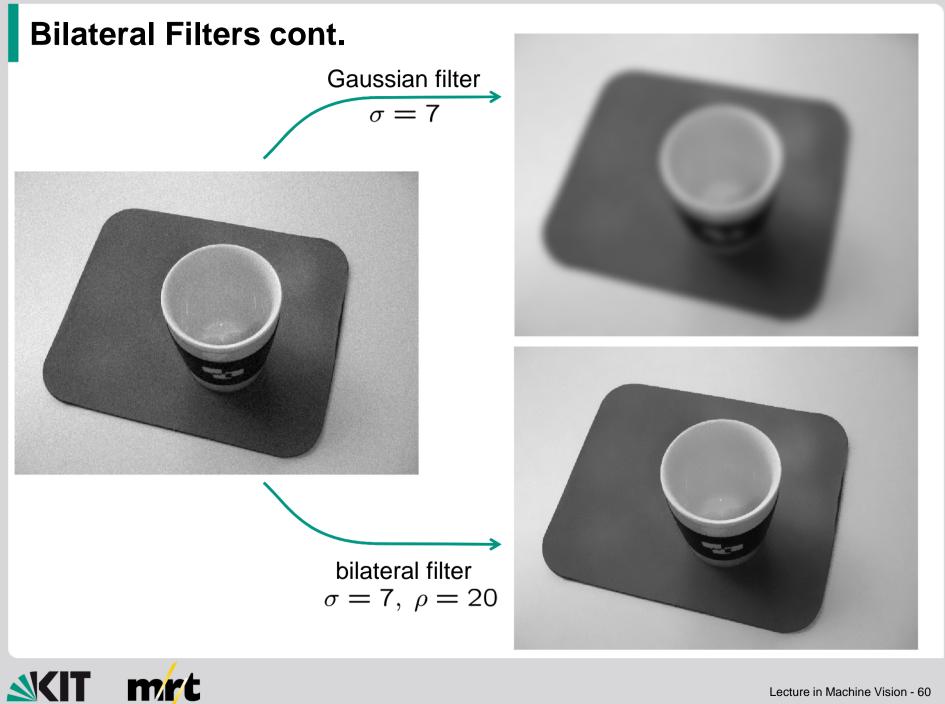
Bilateral filter

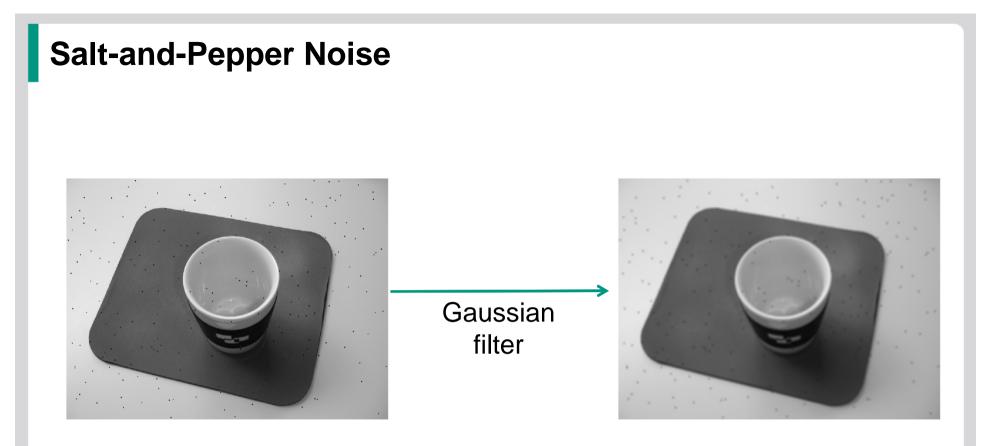
 filter mask dependent on image content





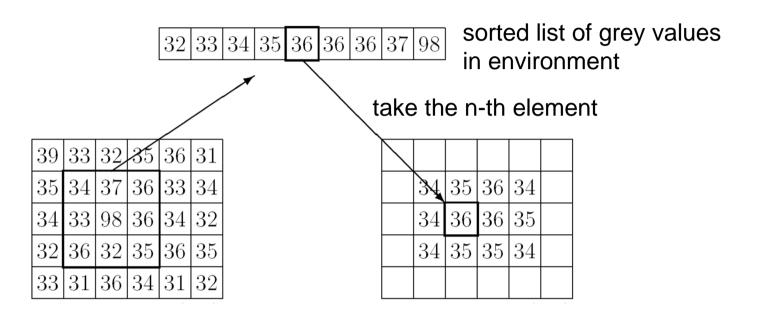
 smooth over edges and gross outliers reduces smoothing at edges and gross outliers





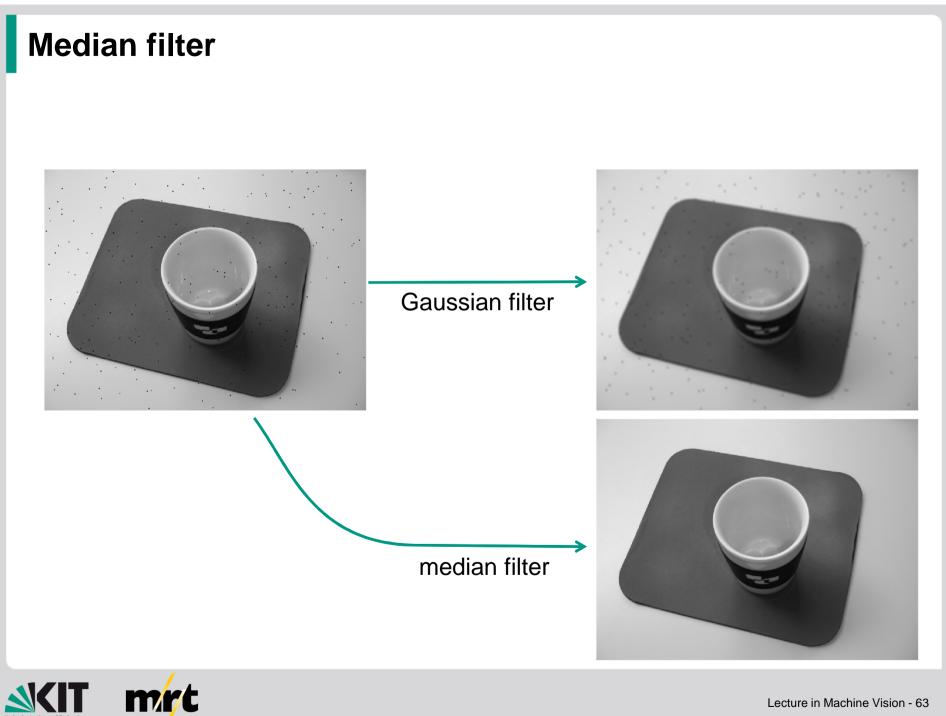
 \rightarrow smoothing not appropriate for salt-and-pepper noise

Median filter



median filter:

- sort grey values in environment around reference pixel
- take the grey value in the middle of the sorted list

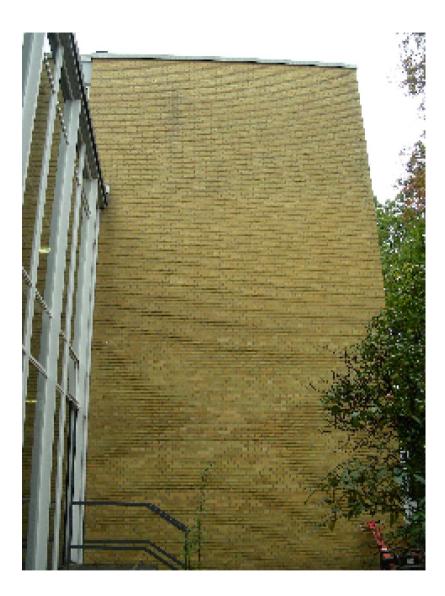


SUMMARY: IMAGE PREPROCESSING

Summary

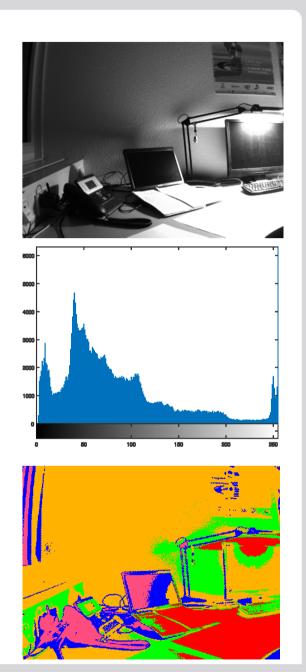
- sampling

- Moiré patterns
- sampling theorem
- Fourier transform
- quantization
- blur and noise



Summary cont.

- sampling
- quantization
 - discrete grey values
 - histogram transformation
 - high dynamic range imaging
- blur and noise



Summary cont.

- sampling
- quantization

blur and noise

- convolution
- models of blur and noise
- optimal image restoration (Wiener deconvolution)
- smoothing filters
 - rectangular
 - Gaussian
 - bilateral
- median filter

