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I Image Formation and Analysis

ECU (electronic control unit)

electronic camera
(formation)

(image processing)

imager
lightsensitive chip

lens memory
light :
| microprocessor
result of image
I analysis
camerﬁl controller,
controller interface
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I Imager

« Process of image formation:
—incident light intensity:

_[Z]RQ — R

— output of imager:

g {0,...,w—1}x{0,...,h—1} — {0,...

w, h . image width, height

v u

light
|
I(u,v) ::>>

imager
g(u,v)
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I Imager

 Process of image formation:
— sampling
evaluate light intensity on a regular grid of points

— quantization
map continuous signals to discrete values (natural numbers)

— blur and noise

—color
will be discussed later. Here: only light intensity/grey level images
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I Sampling

« 2D grids used for sampling

rectangular

» electronic cameras: rectangular, equidistant grids
* biology: hexagonal grids with varying resolution

AT nrt
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hexagonal
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I Sampling: Moireé Patterns

« Moiré patterns
— sampling might cause artifacts

' ‘ | ?:

\ =3 by 5y
]
%

original picture picture with Moiré pattern
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I Sampling: Moireé Patterns

sparse sampling  wall of bricks, 12 layers
— 4 layers

SIT mre

dense sampling
— 12 layers
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I Sampling: Moiré Patterns cont.

« 1D-example of Moiré patterns:

wavelength=10, sample-interval=2

|
250

200

The occurrence of Moiré patterns
depends on the sampling rate
compared to the maximal
frequency of the signal (image)
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I Nyquist-Shannon Sampling Theorem

If £ is band bounded signal with cutoff frequency kg
then it is completely determined by giving its ordinates at a series of

: L
points spaced at most o l.e. the sample frequency must be
larger than 2k 0

« Questions:
—what is a band-bounded signal?
—what is a cutoff frequency?
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I Fourier Transform

« Assume a periodic signal
f:R—C
« Then, we can define the Fourier transform of f

189 | 7| B

position value of signal/ frequency contribution
in signal/ gray value of of frequency
image pixel in image \_/ to signal

7_1:f|—>f

spatial domain

f(k) p— /OO f(w)e—Qﬂ"ikxdx

— O

f@) = [ F)emkea
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I Fourier Transform

* Properties:
—the Fourier transform is linear

Flaf(z) + Bg(z) } (k) = af (k) + B3 (k)

— shifting a signal along the x-axis only changes the complex angles in
frequency domain but not the amplitudes

Flf(z =&} (k) = e 2™k f(k)

—rescaling the x-axis in the spatial domain rescales the frequency axis in
a reciprocal way

F{flan) (k) = = FC)

el
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I Fourier Transform

* Properties:
—a cosine in spatial domain generates two peaks in frequency domain

perfect cosine f zero except two peaks

fzn FRN

(VAR VAL e

—1
spatial domain F
—the peaks are located at position reciprocal to the period length

v

frequency domain

—if the signal in spatial domain is a linear combination of cosines, the
Fourier transform will be a set of peaks in frequency domain

— intuitive interpretation: the Fourier transform decomposes a periodic
signal into a (potentially infinite) linear combination of cosines
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I Fourier Transform

« Observation

— smooth periodic functions with small slope can be composed out of
cosines with large period

— periodic functions with large slope require cosines with small period

— periodic functions that are discontinuous or have discontinuous
derivatives require cosines with unbounded frequencies

« Definition

A signal f is band bounded with cutoff frequency ko if its Fourier
transform is zero for all frequencies larger than the cutoff frequency, i.e.

F(k) = 0 for all k with |k| > kg

-\\.](IT mrt Lecture in Machine Vision - 13
Karlsruhe Institute of Technology'

tttttttt



I Nyquist-Shannon Sampling Theorem

2560

wavelength=10, sample-interval=4
200 .

« signal is band bounded (sine function)
« sampling frequency high enough

1 —
4 > 2fsignal

— 2
fsample - 10
 reconstruction of the signal possible

If £ is band bounded signal with cutoff frequency kg
then it is completely determined by giving its ordinates at a series of
1

points spaced at most ST l.e. the sample frequency must be
larger than 2k

0
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I Nyquist-Shannon Sampling Theorem

2560

wavelength=10, sample-interval=6
[
200

« signal is band bounded (sine function)
 but

1 — 2
fsample =5 < 2fsignal — 10

« reconstruction of the signal impossible

If £ is band bounded signal with cutoff frequency kg
then it is completely determined by giving its ordinates at a series of
1

points spaced at most ST l.e. the sample frequency must be
larger than 2k

0

tttttttt
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I Sampling Theorem and Images

« Remarks

Is

igna
lodic, but we can make it per

ble for 2d s
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Lecture in Machine Vi

Karlsruhe Institute of Technology



I Sampling Theorem and Images

« Questions:
—how can we determine the sampling frequency of a camera?
—what can we do if we find that the sampling theorem is violated?
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I Image Scaling and Interpolation

« changing the image size
« scaling needs evaluation of the image at non-integer
positions — interpolation

 nearest neighbor interpolation:
— approximating the grey level function with a step function
— take the grey value of the nearest integer position
— problem: aliasing

Q|
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I Interpolation cont.

e linear interpolation in ID
—fit linear function locally around x

g(x) = g(lz]) + (z — [=])(g([z] + 1) — g([z]))
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I Interpolation cont.

« extension of linear interpolation to 2D:

—interpolate from 4 neighboring pixels

tttttttt
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I Interpolation cont.

» cubic interpolation
— fit cubic polynomial to the grey level

—solve
g@)=a-(z—|z])*+b (z— [z))°+c (z—|z])+d

yields: . . . .
a = —gg(LwJ — D+ 59(=]) - S9(l=] +1) + gg(LwJ +2)

b=o(lz) 1)~ g(l=]) + Ho(la) + 1)

e=—g(le) = 1)~ Sg(le)) +g(le] + 1)~ Zg(lx] +2)
1= g(lz)) g
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I Interpolation cont.

« extension of cubic interpolation to 2D:

A

F(:,(:\')

. 5 S 1{

I ¢

1 s

)
.TSO /

“Yso

—interpolation from 16 neighboring pixels
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I Interpolation cont.

« Example:

_B
N 72 7

@ N\

2N

nearest neighbor linear interpolation  cubic interpolation
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I Imager

« Process of image formation:
— sampling
evaluate light intensity on a regular grid of points

— quantization
map continuous signals to discrete values (natural numbers)

— blur and noise

—color
will be discussed later. Here: only light intensity/grey level images
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I Quantization

* Incident light:
I:R2 - R

» digital camera signals:
g {0,...,w—1}x{0,...,h—1} = {0, ..., gmaz}
w, h . image width, height

 need transformation from real valued light intensity to
discrete digital signals (analog-to-digital converter)
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I Quantization cont.

linear 2-bit quantiser

I(2) r h(z) /\I (z)
JANY \'\ A

, o | Al — 1Y .
() h(z)

 characteristic with equidistant steps (“linear”) of size A:

g(x) = max{0, min{gmaz, {% + %‘ }}

h(z) = Ag(x)
 error of non-overdriven quantiser:
A A
I(z) —h ==
() —h(z) € -5, 5]
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I Quantization cont.

« characteristic of digital cameras:
—linear
—logarithmic

e grey level cutoff value
—1 (binary images, “bitmaps”) — 1 bit/pixel
— 255 — 8 hit/pixel = 1 byte/pixel
—4095 — 12 bit/pixel = 1.5 byte/pixel
— 65535 — 16 bit/pixel = 2 byte/pixel

« correction of grey level distribution
—image too dark/too bright
—low contrast
—non-linear camera characteristic

Karlsruhe Institute of Technology

linear characteristic

logarithmic characteristic
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I Grey Level Histogram

L L
50 100 150 200 250

grey level

« grey level histograms display distribution of grey levels
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I Grey Level Histogram cont.

L L 1
100 150 200 250

Underexposed images:

 open aperture of camera o multiply grey values by a constant
» increase exposure time of camera * auto-exposure implemented in

* increase gain many digital cameras

« add additional light sources
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I Grey Level Histogram cont.

_ x104
o=« -
”-
- 2F
"
15
i 1F
4
u-
‘T
1
0 50 100 150 200 250

Overexposed images:

information loss due to cutoff value, no reconstruction possible
close aperture of camera

reduce exposure time of camera

auto-exposure
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I Grey Level Histogram cont.

Gamma correction:

. 9in K
Gout — 9Ymax

dmax

» keeps black and white
* nonlinear transformation
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I Grey Level Histogram cont.

Gamma correction:

\ i
. 9in
Gout — 9Ymax ( )

dmax

» keeps black and white
* nonlinear transformation
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I Grey Level Transformations

brightening

dmax

Gout

0O ——— gmax
9in

SKIT mreé
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. contrast
shading enhancement
gmax dmax
Gout Gout
O
0O ——— 9maz 0 —— dmax
dmazx
Gout gamma
correction
0]
0 — Gmaz
9din
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I Exposure Series

— exposure bracketing, high dynamic range imaging (HDRI):

increase the grey value resolution combining over- and
underexposed images

right exposure: overexposed: no
details visible details visible

underexposed: no right exposure:
details visible details visible
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I Exposure Series cont.
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250 % o Ty o

gray level histograms

10000

5000

gray scales differ by a constant factor
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I Exposure Series cont.

HDRI image (after log transform)

Karlsruhe Institute of Technology'

HDRI mixing

2 4 [}

HDRI histogram
(after log transform)

8 10
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I Imager

 Process of image formation:
— sampling
evaluate light intensity on a regular grid of points

— quantization
map continuous signals to discrete values (natural numbers)

— blur and noise

—color
will be discussed later. Here: only light intensity/grey level images
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I Convolution Operator

The convolution operator
—takes two functions f, g
—creates a new functionh = ¢ * f
—which is defined pointwise by

®@)
h(@) = [ f(D)g(a—r)dr
—we interpret
- g is a gray level image

« f is a filter function
« h is a filtered image

— convolution implements a linear filter

tttttttt
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I Convolution Operator

g
« Example
_Jo ifz<oO gx*f
9@ =11 a0 | %
A
(0 ifz<-—1 !
fl@)=14% if —1<z<+1 | |
0 ifz>+1 >

\

(9+N@ = [ J@g@—ndr= [ f(r)-1dr+ [~ j(r)-0dr

o .
N (0 if x < —1

=/mjﬁm7=<am+n if —1<a<-41
|1 if x> +4+1
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I Convolution Operator

 Properties of convolution
— commutativity

fxg=gxf
— associativity
(f*xg)*xh=fx(gx*h)
— linearity
fx(ag+ Bh) =a(f*xg) + B(f=h)
—relationship with Fourier transform
F(f+g) =F(f) F(g)
F(Of-9)=F(f)*=F(g)

AT nrt
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I Convolution of Images

« Convolution can be extended
—to the 2d case

fg:R° =R
(g [z, y) = /_O:O f_o; f(r,p)g(x — 7,y — p)drdp

—to the case of function which we can evaluate only at integer positions
ﬁgZZ—+R

GxHW =S FR)g(u— k)
k—=—00
f9:22 =R
G+ D)= 3 3 flkDgu—kv—1)

k=—oc0 [=—0

-\\.](IT mrt Lecture in Machine Vision - 41
Karlsruhe Institute of Technnlngy



I Convolution of Images

filter

gray level pixel to
image evaluate

problem: sums run to infinity!

—In practice, filters and images have limited size.
We assume that all gray levels outside of filter size are O
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I Convolution of Images

/

« Example

'MEIABHO 00
5 2|11 [2)o)2)
6|3[2]2fo)1)3)
4lalsls|al7]3
6|l6|7|sl9]o]7
g*f:]

3026|1512 (18]
47(39]30(32]30]| =

6152|53]57|45
V'd

(9= f)(5,1) =
(=1, -1)g(6,2] + 70, —1)g(5,2) { F(1,-1)g(4,2)]
F7(-1,009(6,1) |+ 700.09(5,1) | 4/1,0)9(4,1) |
t£(=1,1)9(6,0) |4+ £(0,1)9(5,0) | 4 f(1,1)g(4,0)

boundary pixels are typically left free
since convolution requires evaluation
of pixels outside of image ¢

G D)= 3 3 flkDglu—kv—1)

k=—0c0 l=—o0

Karlsruhe Institute of Temnolngy
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I Blur and Noise

* types of blur and noise:
— motion blur
— defocus aberration
— statistical noise of sensor cells and amplifiers
— malfunctioning sensor cells

image source: wikipedia
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I Models of Blur

« Motion blur:

direction of movement

</

« Gaussian blur:

W

tttttttt

row of sharp image

row of blurred image

row of sharp image

row of blurred image
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I Models of Blur cont.

e blur can be modeled with convolution
Iblurred — Y9sharp * P

p : “point-spread-function” models blur

— motion blur (along x-axis by n pixels):
1 if —n<x<O0

(Y= 1n
Pmotion () 0 otherwise

— Gaussian blur (with variance ¢?):
1 1z2

pGa’ULSS('T) — m6_20_2
Two

tttttttt

o 1342 +1

-1 -2 3.

N

7

INZNV/
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I Wiener Deconvolution

« techniques to obtain sharp image from blurred image based

on Wiener filter
Iblurred —Ysharp * P + v

p . point-spread-function
v . pixel noise
assume gqpqrp aNd v be independent

Grestored =f* 9blurred

find optimal f that minimizes:
e(k) =E “gsharp(k) — grestored(kﬂz}
(g denotes Fourier transform of g)
(E denotes expectation value)

-\\J(IT mrt Lecture in Machine Vision - 47
Karlsruhe Institute of Technnlngy



I Wiener Deconvolution cont.

e(k) =E [[Gsnarp(k) — Grestorea(®)[?]
=E Gsharp(k) — FOR)Gyrurrea(k)|?)
=E ||Gsharp(k) — F)BUE)Gsharp(k) + 5(k))|?]
=E ||(1 = F(E)B(K))Gsharp(k) — F(R)D(K)|*
—(1 — 7)) (X — F)BR))E [Gshary (F)Fenary (0]
— (1 = FR)BR) F* (RN [Gaary (K)0" (k)
— F(k)(1 = F()B(E))TE [5(k)Ginarp(R) |
+ J(&) F*(KJE [3(k)T" ()]
independence of signal and noise yields:
E |Gsharp(F)0* (k)| = E |[6(k)§parp (k)| = O

denote:
S(k) = E |Gsharp(K)Ginarp(®)|, N (k) = E [6(k)5* (k)]

e(k) =(1 — f(k)p(k))(1 — f(k)p(k))"S(k) + f(k)f* (k)N (k)
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I Wiener Deconvolution cont.

« zeroing the derivative of e to obtain the minimum yields:

PSR ()1 .o W )
PP (R)S(R) + N(B)  |p(k)I2 + ()~

which defines the optimal linear filter (Wiener filter)
S
. N((’,?) IS the signal-to-noise ratio

 INn the noiseless case:

A=t

500 (if N(k) = 0)

S(k)

e but; NGB

and p(k) must be known
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I Wiener Deconvolution cont.

@ original image
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I Wiener Deconvolution cont.

& original image

Gaussian blur
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I Models of Noise

o statistical noise:

gnoisy(xa y) — gsha'rp(xa y) =+ ’U(Ll?, y)
v(z,y) ~ N(0,c0?) i.i.d.

(i.i.d. = independent and identically distributed)

« malfunctioning sensors:

(2.7) Isharp(Z,y)  with probability p
. :Ij, = . .
Inoisy\:tr Y arbitrary otherwise

SIT mre
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I Statistical Noise

« basic idea: averaging (smoothing)

"/

noisy image

8-

Image after smoothing

« works well in homogeneous areas, but fails at grey level

edges
I noisy image
- HBE image after smoothing
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I Smoothing Filters

e rectangular filter
1

fa) = {a if o] < 2

0 otherwise

the larger parameter a , the stronge
smoothing
« Gaussian filter

1 _1
f(z) = e ?
V2?2
the larger parameter o, the stronger
smoothing

2

s
N

tttttttt

0.4

035

03

025

nzr

015

01

005

rectangular filter

Gaussian filter
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I Smoothing Filters

« Fourier transform of smoothing filters

sin(wzx) :
F(rect.filter) (k) = sinc(ak) = { — if £ =0

1 if =20

F(Gauss.filter)(k) = e—2m?0%k?

1F

Gaussian filter rectangular filter

0.ar

0.6

04r

0.2r

n

-0Zr

— Smoothing: low pass filtering

1 1 1 1 1 1 1 1 1
-1 -0g -06 -04 -02 1] 0.z 0.4 0.6 0.4 1
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I Smoothing Filters for Images

—rectangular filter masks:

[0.1Jo8

11f1]2]2 1 |o:glo.1

. I
1 [afe]e 1 Lefefa]afs 1 lp8li]1]1jos
—l111]1 —|1f111]1]12 =1 1 1

9 25 19.8

11]1 1l1f1f1]2 ogl1|1]1os
11]1]1]1 lo.1]o.8| 1 fo.8f0.1
3x3 square mask  5x5 square mask 5x5 disc mask
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I Discrete Convolution cont.

— Gaussian filter masks:

1147141
1 1141 1 4 |16|26l16| 4
— |4 |19]4 = 2641126
39 273 L !
11411 4 |16]26]16] 4
1147141
3x3 mask, 02=0.25 5x5 mask, 02=1

— binomial filter masks
approximations to Gaussian masks using binomial coefficients (:)

2 2
(2)-(2) /(1)'(0) 1lale|a]1
070 \ v 1 l1]2]1 1 |4 ]z26]24]16] 4
2y 2 b — |2la4]2 ~—="| 6 24]36]24] 6
(0) ' (1);?, h\l o 1]2]1 50 4 {1624 16] 4
2 2 \ 1lalela]1
(O) (2) (f) ' (i) 3x3 mask 5x5 mask
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I Smoothing Filters cont.

Gaussian, sigma =7
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I Bilateral filter

Gaussian filter Bilateral filter

« filter mask independent of e filter mask dependent on

Image content Image content
content dependent weight
A
( \
12442 1 llgQutiti)—g(uw)||?
g(u,v)ocZ(\e 2 52 -g(u—I—i,v—l—j)) §(u,v)o<2(e 2 p° :
—~— W Y S e
gray level distance gray level gray level _lM
after filtering dependent after filtering e 2 o2 . g(u —|— ’é, v —|— ]))
weight \ J \ J
) 4 A\ 4
distance gray level
dependent
weight
« Smooth over edges and  reduces smoothing at edges
gross outliers and gross outliers
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I Bilateral Filters cont. -

Gaussian filter

>
g = 7
>
bilateral filter
g = 7’ p - 20
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I Salt-and-Pepper Noise

‘>

Gaussian
filter

— smoothing not appropriate for salt-and-pepper noise
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| Median filter

sorted list of grey values

32(33134(35]36(36|36|37 (98] :
In environment

take the n-th element

39133132485 (36(31
35134|37(36(33]34 XN (353634

34133198(36 (34|32 34136136(35
32136 (32|35136(35 3413513534
33(31136(34|31|32

median filter:
e sort grey values in environment around reference pixel
- take the grey value in the middle of the sorted list
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| Median filter

‘>

Gaussian filter

median filter
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SUMMARY: IMAGE PREPROCESSING
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I Summary

— sampling
* Moire patterns
e sampling theorem
* Fourier transform

— quantization

— blur and noise

SKIT mre

e Institute of Technology
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I Summary cont.

— sampling

— quantization
» discrete grey values
* histogram transformation
* high dynamic range imaging

— blur and noise

IT mre

Institute of Technology
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I Summary cont.

— sampling

— quantization

— blur and noise

convolution
models of blur and noise

optimal image restoration
(Wiener deconvolution)

smoothing filters
e rectangular
e Gaussian
* bilateral
median filter

IT mre

Institute of Technology
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